
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1162
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Compression of FPGA Bitstreams Using Improved
RLE Algorithm

P.Hemnath V.Prabhu

Abstract - FPGA are configured using bitstreams often loaded from memory. FPGA often called as reconfigurable design because it lower the memory
requirements, reduces the bitstreamsize. Some techniques are not suitable for real time decompression. There is need to design a compression
technique which efficiently reduces bitstream size meanwhile keeping decompression ratio minimum. In our technique there are some major part of work
which are more important they are 1) smart arrangements of the compressed bits that can significantly decreases the overhead of decompression
engine 2) combination of bitmask-based compression and run length encoding of repetitive patterns 3)selection of profitable parameter for bitstream
compression.The proposed techniques outperforms the compression ratio of existing techniques by 5-15% and decompression hardware is capable of
operating at 200M H Z.

Index Terms - Field-programmable gate array,Runlength encoding, Bitmask-based compression , bitstream compression,configurable logic
block(CLB),Bitmask selection,Dictionary selection.

1.INTRODUCTION

Field programmable gate array (FPGA)-based embedded
systems can sustain high processing rates while providing a
high degree of flexibility required in dynamically changing
environments. To measure the efficiency of bitstream
compression, compression ratio (CR) is widely used
parameter. Compression ratio is given as the ratio between
the compressed bitstream size (CS) and the original
bitstream size (OS) i.e., CR=CS/OS. Therefore, a smaller
compression ratio implies a better compression technique.
There are two major challenges in bitstream compression:
1) how to compress the bitstream as much as possible and
2) how to efficiently decompress the bitstream without
affecting the reconfiguration time. Fig1 shows the
traditional code compression and decompression flow
where the compression is done off-line and the compressed
program is loaded into the memory. The decompression is
done during the program execution .The decompression
hardware decodes and transfers the compressed bits from
memory to configuration hardware which is then
transferred to configurable logic blocks(CLB)memory. The
existing bitstream compression techniques can be classified
into two categories. first category have good compression
ratio due to complex and variable-length coding. They
also need expensive decompression hardware, which may
not be acceptable for practical implementation. The
second category of compression approaches accelerate
decompression using fixed-length coding and therefore
have very efficient decompression hardware. Here the
compression ratios are usually compromised. Among the
various compression techniques that has been proposed ,

application of bitmask-based compression are more
attractive for bitstream compression, because of its good
compression ratio and its simple decompression scheme.

 Fig1 Code compression overview

2. RELATED WORK

There are large number of compression algorithms that
can be used to compress configuration bitstreams. These
techniques can be classified into two categories based on
how the redundancies are exploited: format specific
compression and generic bitstream compression. The
compression techniques in the first category exploit the
local redundancies in a single or multiple bitstreams by
reading back the configured data and storing the
differences by performing exclusive-OR(XOR) operation.
These algorithms requires FPGA to support partial
reconfiguration and frame read back functionality. Pan et
al. [1] uses frame reordering in the absence of read back
facility on FPGA. In this technique frames are reordered
such that the similarity between subsequent frames

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1163
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

configured is maximum. The difference between
consecutive frames is then encoded using either Huffman
based run length encoding or LZSS based compression.
Another method proposed in the same article organizes
and read back the configured frames. The frames are
organized such that compressed bitstream contains
minimal number of difference vectors and maximal read
back of configured frames thus reducing the compressed
frames significantly. Such complex encoding schemes tend
to produce excellent compression ratio.

3. RUNLENGTH ENCODING

A variation of Run-Length encoding perfectly meets the
requirements for the address compression. A series of
addresses with a common offset can be compressed into a
code word of the form: base, offset, length. Base is the base
address, offset is the offset between addresses, and length is
the number of addresses beyond the base with the given
offset. For example, the following sequence of
addresses:100, 103, 106, 109, 112 can be compressed into the
codeword: base = 100, offset = 3, and length = 4. This
compression technique does not require repetitive data,
and will take advantage of the sequences of addresses
sharing a common offset. The configuration data sometimes
repeats data values many times. For this reason, we will
attempt to compress the data streams with Run-Length
encoding as well, although the compression may not be as
great as that achieved with the addresses.

3.1 Runlength hardware

The Run-Length hardware is shown in Fig 2. It consists of a
register to hold the current address to output; a down
counter to count the length; an adder, to add the offsets to
the previous value; and a mux to choose between a
previous valued added to the offset and the new base
value. when the down-counter equals zero mux chooses the
output of the base register. When a new code word arrives,
the base value is written into the address register at the
same time that the length is written into the down-counter.
The down-counter then counts down until zero, while the
address register captures its previous value plus the offset.

Fig 2 Run-Length hardware support

4.DECODE-AWAREBITSTREAM
COMPRESSION

Fig. 3 shows our decode-aware bitstream compression
framework. By combination of the bitmask-based
compression and run length encoding (RLE) the
compressed bitstream is obtained. Next step to decode, our
decode-aware placement algorithm is used to place the
compressed bitstream in the memory for efficient
decompression. When running, the compressed bitstream
is transmitted from the memory to the decompression
engine, finally original bitstream is produced by
decompression.

 Fig3 Decode-aware bitstream compression framework

There are mainly four important steps in our decode-
aware compression framework as shown in algorithm1
1) bitmask selection; 2) dictionary selection; 3) RLE
compression; and 4) decode-aware placement. The input
bitstream is first divided into a sequence of symbols
with length of w. Then bitmask patterns and dictionary
entries used for bitmask-based compression are selected as
described in Section 4-1 and Section 4-2. Next, the symbol
sequence is compressed using bitmask and RLE. The RLE
compression in our algorithm is discussed in Section 4-3.
Finally, we place the compressed bitstream into a decode
friendly layout within the memory using placement
algorithm in Section 4-4.

Algorithm 1 Decode-Aware Bitstream Compression
Input: bitstream

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1164
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Output: Compressed Bitstream placed in memory

Step 1 : Divide input bit stream in Fixed size symbols

Step 2 : Perform Bitmask based pattern selection

Step 3 : Perform Dictionary Selection

Step 4 : Compress symbol into code sequence using bitmask
and RLE

Step 5 : Perform decode aware placement of code

4.1 Bitmask selection

There are mainly three types of encoding formats are used
in our compression . Fig. 4 shows the formats in these cases:
without compression compression, compression using
dictionary, and compression using bitmask. The selection of
bitmask plays an important role in bitmask-based
compression. Generally, there are two types of bitmask
patterns. First One fixed bitmask, which can only be
applied on fixed positions in a symbol. The other one is
“sliding” bitmask, which can be applied at any position.
For example, a 2-bit fixed bitmask (“2f” bitmask) is
restricted to be used on even locations, but a 2-bit sliding
bitmask (“2s” bitmask) can be used anywhere. Clearly, fixed
bitmasks require less bits to encode its location, but they
can only match bit changes at fixed positions. In other
words, only a few number of bitmask patterns or their
combina- tions are profitable for compression.The sliding
bitmasks are more flexible, but consume more bits to
encode. The profitable bitmask patterns that we use in our
compression is(1s,2s,2f,3s,3f,4f,4s).

Fig4 Encoding formats in bitmask-based compression. (a)
Uncompressed symbol. (b) Symbol compressed with dictionary index.
(c) Symbol compressed with bitmask

4.2 Dictionary selection

The dictionary selection is majorally governed by a words
capability to match other words using minimal number of
bit masks and covers as most of the input words. The input

is divided into unique words with each word associated
with frequency (fi). A graph (G) is created in which each
vertex represents word with frequencies as its weight. Two
vertices are connected via an edge if the two words
represented by them can be bit masked with using at most
all the bitmasks in B. Each edge (u, v) will have the number
of bitmasks used to match vertex u and vertex v as its
weight. The savings made for each vertex is calculated
based on the sum of savings made by itself in the dictionary
and savings made by bitmask matching with other
vertices indicated by the incident edges on it.

4.3 Run-length encoding of compressed word

 Analysis of the bitstream pattern revealed that the input
bitstream contained consecutive repeating patterns of
words. The algorithm proposed in previous section will
encode such patterns using same repeated compressed
words. Instead we use a method in which repetition of
such words are run length encoded (RLE). Such repetition
encoding will result in an improvement in compression
performance by around 10-15%.To represent such
encoding no extra bits are needed; another interesting
observation leads to the conclusion that bitmask 0 is never
used, because this value means that it was an exact match
and would have encoded using zero bitmasks. Using this as
a special marker, these repetitions can be encoded. This
smart encoding will reduce the extra bit that is required to
indicate on all the compressed words otherwise.Another
advantage of such run length encoding is that it alleviates
the decompression overhead by providing the
decompressed word instantaneously to the decoder to
sendit to the configuration hardware in the same cycle.
This ensures the full utilization of the configuration
hardware bandwidth and reduces the bottleneck on
communication channel between memory and decoder.
Fig 5: illustrates the RLE bitmask in use. The compressed
words are run length encoded only if the savings made by
RLE word encoding is greater than the actual encoding.
That is if there are r repetition of compressed words and
cost of representing each word is x bits and the number of
bits required to encode run length is l bits then RLE is used
only if x ∗ r < l bits.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1165
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 5 RLE-basedcompression

4.4 Decode-aware placement of compressed
bitstreams

The basic idea is to split the original single VLC bitstream
into multiple FLC bitstreams for storage. During
decompression, these FLC bitstreams are buffered
separately, then used to reconstruct the original bitstream
by bitmask decoding. Since the buffering circuitry for FLC
bitstreams is much simpler than that of VLC bitstreams, the
overall decompression performance will be improved
even when multiple FLC buffers are used. We will use
“power-two n-bit stream,” in remaining sections. Then we
describe how we split the original compressed bitstream
into multiple FLC bitstreams and how to place these FLC
bitstreams into the memory in such a way that the original
bitstream can be reconstructed during decompression.

5. DECOMPRESSION ENGINE

The diagram of our decompression engine for 8-bit memory
is shown in Fig. 6 Barrel Shifter (BBS) is replaced by an
Assemble Buffer with a Left Shifter Array (ABLSA) .The
basic working principle of ABLSA is to use an array of left
shift registers to buffer the power-two bit streams
separately. Since the code length in bitmask-based
compression is uniquely determined by the first two bits of
a code , we can easily get the length of a code by checking
of front bits of stream CS and BS. Then, the shift register
that hold bits of the code is identified based on the binary
representation of the code length. Finally, the original code
is assembled in the assemble buffer and fed to the RLE
decoders. When some other shifter becomes empty it is to
be loaded correctly by our decompression algorithm.

Fig 6 Decompression Engine

6. COMPRESSSION EFFICIENCY
In our system there two sets of hard to compress IP core
bitstreams that are being taken from image processing and
encryption domain to compare compression and

decompression efficiencies. We used Xilinx Virtex-II family IP
core benchmarks to analyze the results. The same results
are applicable to other families and vendors too. We
compared our approach with existing best known distance
vector (DV)-based bitstream compression technique pro-
posed by Pan et and best known parameterized LZSS
based decompression accelerator proposed by Koch et al.
In our experiments, Pan et al benchmarks are compressed
with 32 bit symbols, 512 entrydictionary entries and two
sliding 2- and 3-bit bitmask for storing bitmask differences.
Koch et al benchmarks are compressed using 16 bit
symbols, with 16 entry dictionary and a 2-bit sliding
bitmask.
we compared BMC and our approach with LZSS, which also
employs RLE. The results are given in Fig 7: It can be
observed that pure LZSS is quite effective on Koch
benchmarks, because these benchmarks have large amount
of repetitive patterns, which are suitable for run length
encoding. Nevertheless, LZSS is not able to reduce the
bitstream size significantly

Fig 7 Comparison of compression ratio with LZSS and BMC

FIG 8 Comparison with difference vector compression.

The difference vector is encoded using Huffman based
RLE with frame readback , and LZSS with frame readback
(DV LZSS RB). Fig8: shows the results.The Huffman based
method achieves the best com- pression (10% to 15% better

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1166
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

than our approach) using shorter variable length
encodings. Study reveals that encoding requires complex
and large hardware to handle variable-length Huffman
codes and has slower operating speed. Thus Huffman-
based decoder inspite of its good compression ratio is not
suitable for realtime decompression. Compared with DV
LZSS RB approach, which is suitable for practical
implementation, our method has better (10% to 15%)
compression performance

Fig:9 shows the results. Our approach outperforms X-
Match PRO. Since software compressors like PPMZ and bz2
have complex compression algorithm and almost
unlimited resources, it is excepted to generate near
optimal results

Fig 9 Comparison with other compression techniques.

6.1 Decode Aware Vs Bmc
Bitmaskbasedcompression technique proposed is
compared with all other main techniques and it is
shown in fig 10: The four different type of compression
techniques that are compared; i) BMC - bit mask
compression technique , ii) BMC DC - bit mask
compression along with new dictionary selection
technique, iii) pBMC DC - our proposed decode aware
bit mask compression and iv) pBMC+RLE - our
proposed decode aware bitmask compression combined
with run length encoding. The dictionary generated by
our algorithm improves the com- pression ratio by 4% to
5%. The reason is that other benchmark requires large
dictionaries for better compression ratio of size untill 1k
entries. we were unable to find the threshold value
manually for each bitstream, our algorithm adaptively
finds the most suitable dictionary entries for each
bitstream. The experimental results also illustrate the
improvement of compression ratio due to the run length
encoding used in our technique. The column pBMC+RLE
in Fig. 10 shows improvement on all the benchmarks.

On an average we found 5% to 7% reduction over pure
bitmask-based compression for Pan et al. [1] benchmarks
and 15% improvement on Koch et al. [4] benchmarks. This
is due to the fact that FPGA configuration bitstreams
usually have many repetitive patterns. Our RLE en-
coding technique adaptively compresses these patterns
without compromising the effectiveness of bitmask-based
compression technique.

Fig10 Comparison of compression ratio with bit mask based code
compression technique

7. DECOMPRESSION EFFICIENCY
We measured the decompression efficiency using the time
required to reconfigure a compressed bitstream, the
resource usage and maximum operating frequency of the
decompression engine. The reconfiguration time is
calculated using the product of number of cycles required
to decode the compressed bit- stream and operating clock
speed. We have synthesized decompression units for
variable-length bitmask-based
 compression, difference vector-based compression (DV
RLE RB), and our proposed approach on Xilinx Virtex II
family XC2v40 device FG356 package using ISE9.2.04i to
measure the decompression efficiency. The results are given
in Table I. Observation shows that our approach can operate
at a much higher frequency and occupies only 60% area
compared to original bit- mask-based decompression
engine. Since our approach has the identical bitmask
decoding circuit of the original one, the improvement is due
to our ABLSA as we expected we have achieved 15%–20%
better compression which means we can decompress more
configuration information during the same amount of time.
Table 1 Operating speed and lookup table usage of
decoders

Type Speed(MHz) Slice usage

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1167
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Bitmasdecoder 130 250

Lzss 198 45

Our approach 195 130

8. CONCLUSION

In this paper we have presented the efficient novel decode-
aware compression technique to improve both
compression and decompression efficiencies. The
combinations of bitmask based compression and run length
encoding provide an efficient compressed bitstream, so that
more configuration information can be stored using the
same memory. The proposed technique to compress
reconfiguration bitstream is found to improve compression
ratio by around 10-15% and the decompression engine
capable of operating at around 200MHZ. The
reconfiguration time is reduced by around 15-20%
compared to nearest decompression accelerator.

 Acknowledgment

 Iwould like to thank my guide and my department
staff for providing me an opportunity to solve
complex problems and encourage me to learn new
technologies.

 References
[1] J. H. Pan, T. Mitra, and W. F. Wong,2004 Configuration bitstream
com- pression for dynamically reconfigurable FPGAs.
[2] S. Hauck and W. D. Wilson, 1999 Runlength compression
techniques for FPGA configurations in Process.

[3] A. Dandalis and V. K. Prasanna, 2005 Configuration compression
forFPGA-based embedded systems.

[4] D. Koch, C. Beckhoff, and J. Teich, 2007 Bitstream decompression
for high speed FPGA configuration from slow memories.

[5] S. Seong and P. Mishra, 2008 Bitmask-based code compression for
em- bedded systems.

[6] S. Hauck, Z. Li, and E. Schwabe,1999 “Configuration compression
for the Xilinx XC6200 FPGA.

[7] D. A. Huffman,1952 A method for the construction of minimum-
redun-dancy codes.

[8] A. Moffat, R. Neal, and I. H. Witten, 1995 Arithmetic coding
revisited.

[9] A. Khu,2001 Xilinx FPGA configuration data compression and
decompression.

[10] M. Huebner, M. Ullmann, F. Weissel, and J. Becker, 2008 Real-time
config-uration code decompression for dynamic FPGA self-
reconfiguration

P.HEMNATH is currently pursuing master degree in vlsi
design from vel tech multi tech DR.Rangarajan
DR.Sakunthala engineering college,avadi,Chennai.

E-mail: hembakkiya@gmail.com

V.PRABHU is assistant professor in the department of
ECE in vel tech multi tech DR.Rangarajan DR.Sakunthala
engineering college,avadi,Chennai.

E-mail:prabhu.cvj@gmail.com

IJSER

http://www.ijser.org/
mailto:hembakkiya@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1168
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

